

STA Presentation

Shifting Gears – How to ride the wave of change in the automotive industry?

by Christian Koehler, Strategy Engineers GmbH & Co. KG, Munich, Germany

June 7th 2017

Riding the wave of change in the automotive industry....

Introduction

Carlos Ghosn said at the opening of last year's New York International Auto Show:

"I expect the global auto industry to see more changes in the next five years than it has in the last twenty".

He continued by saying:

"Because for those open to new ideas and new ways of doing things, the opportunities for our industry to grow and better serve society's needs has never been greater."

Trends

Changes

Business

Strategy Engineers 2017

 \odot

The automotive industry is facing the biggest change in history due to several trends caused by legislation, society, technological developments

Key automotive trends 2017ff

Electrification

- Increased penetration of electrified powertrains
- Electrical power becomes <u>Technology</u> scarcer and tightly managed
 - Range vs. functions tradeoff
 - New styling freedom in purpose-built xEV

Connectivity

- Increased connectivity in vehicles
- Increased data exchange (car2car, car2infrastr., car2x)
- Increased digital services in the automotive eco system

Autonomous Driving

- Increasing levels of autonomous driving from hands-off to mind-off
- Based on superior hardware for sensors and artificial intelligence
- Enabled through new software for object recognition, trajectory planning and actuation

- Mobility as a service
- Decreasing attractiveness of traditional car ownership model
- Lease- or opportunity-based usage models
- Multi-modal transport solutions
- Cross-OEM and cross-modal solutions
- Digitals as new entrants

Changing Industry

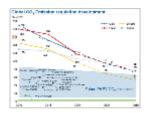
- New vehicles, new markets
- New players and business models
- Changed volume structure (e.g. less cars due to Robotaxis)
- Changed price structure (e.g. decreasing margins due to xEV)

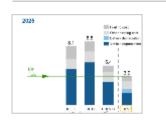
Digitalization

- Internet of Things / Industry 4.0
- Agile strategy and business processes
- End consumer driven

Riding the wave of change in the automotive industry

• Electrification


- Autonomous Driving
- Digitalization


Four major drivers will lead to increasing xEV market shares beyond $2020 - CO_2$ regulation, TCO, electrical range and increasing charging infrastructure

Drivers for increasing xEV market share

Legislation and stricter CO₂ targets

The increasing pressure to reduce pollutant emissions and CO_2 emissions and introduction of real driving emissions creates the need for pure EVs

Competitive total-cost-of-ownership (TCO)

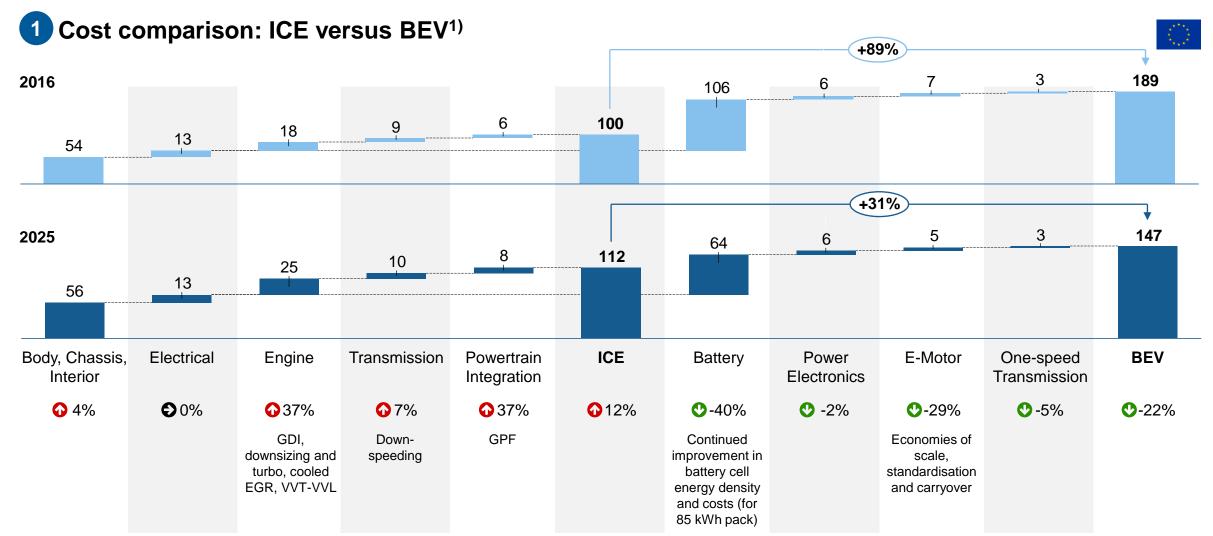
When the total cost of ownership for EVs reaches break even, electric vehicles become increasingly attractive for a larger number of costumers

Increasing electric range

Increasing pure electric ranges will soon meet customer demand

2017

Increasing availability of charging infrastructure


Increasing charging options to secure customers' demand

Source: Strategy Engineers // TCO: total cost of ownership SE17_(SE_AVL_STA)_20170607_Handout.PPTX

Electrification

BEVs will gain a solid material cost advantage over ICEs soon – Point of cost parity depends on battery cost decrease

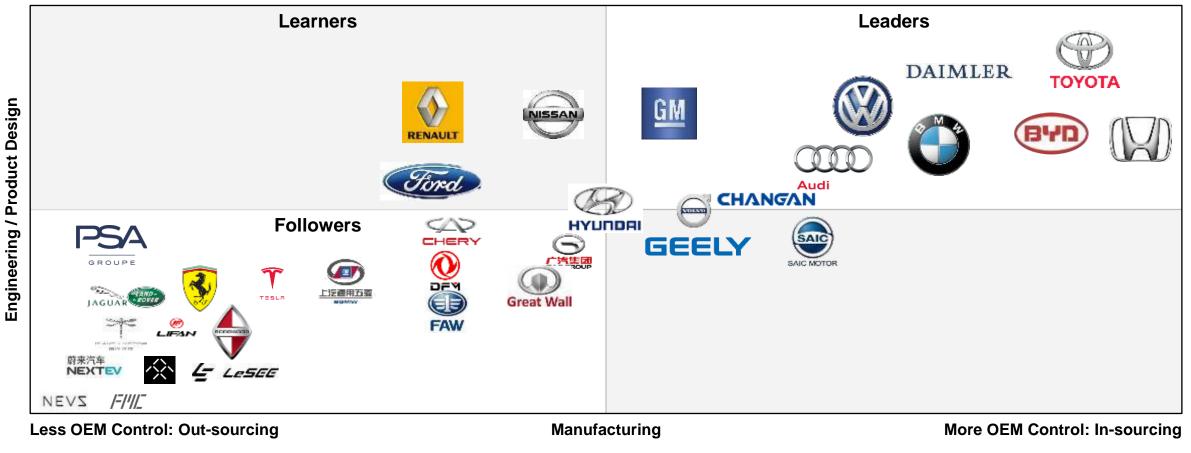
© Strategy Engineers 2017

Source: USABC, SAE, IKA, Strategy Engineers analysis and estimates // ¹) Europe C segment vehicle; 2016, Costs module incl. Battery management system: 120 €/kWh – 2016. 80 €/kWh - 2025

AVL 3

....

STRATEGY ENGINEERS

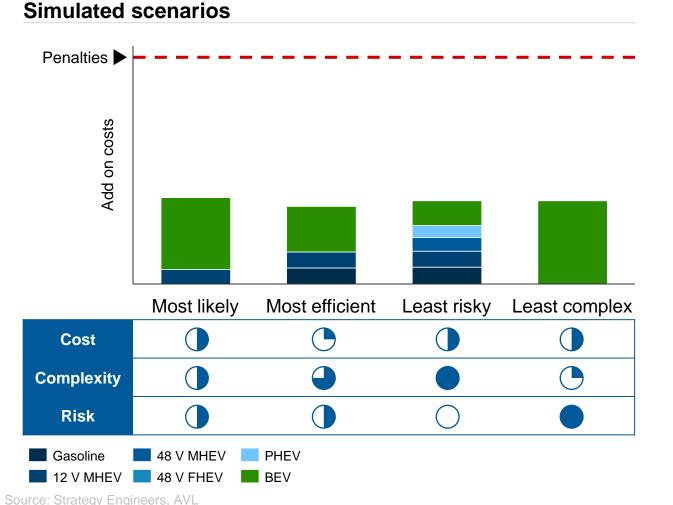

Electrification

OEMs employ different strategies when it comes to engineering and manufacturing of xEV systems

1 OEM engineering and manufacturing strategies

ILLUSTRATIVE

More OEM Control: In-House


Strategy Engineers 2017

 (\bigcirc)

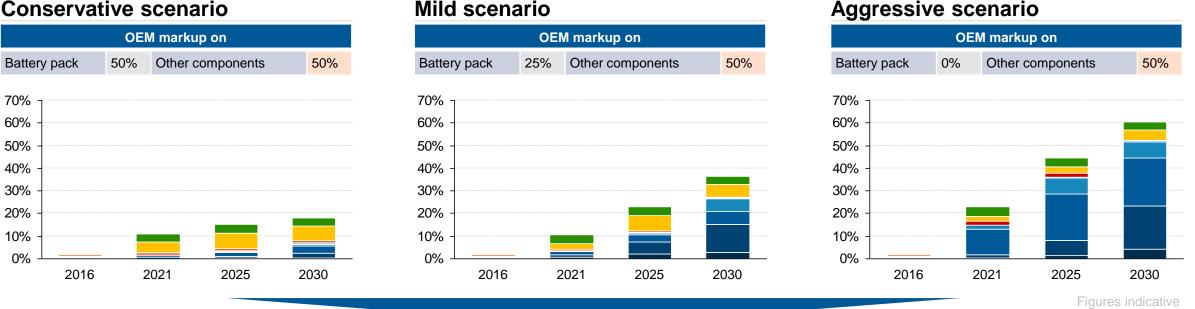
From a strategic and financial viewpoint, exposure to the risk of penalty costs is not feasible – xEV vehicles must be pushed onto the market

CLIENT EXAMPLE

Comments

- Penalty → worst option: always much more expensive
- **BEVs necessary** to achieve CO₂ fleet targets 2021/2025
- Betting only on **BEVs** is too risky: the required market share needs **high subsidies**
- Hybrid technology is a valuable complementary solution
- Further **improve ICE technologies** for Gasoline to reduce required share of xEVs
- Keep the **portfolio mix complexity low** to avoid an overload for the R&D effort and reduce the risk of project delays

Source. Strategy Engineers, AVL


SE17_(SE_AVL_STA)_20170607_Handout.PPTX

xEV customer demand (pull) is strongly dependent on OEM pricing decisions

Mild scenario

xEV customer demand (pull)

Conservative scenario

OEM decisions in term of gross margin are crucial for the diffusion of xEVs

F/F BFV

- Aggressive scenario to be considered only if fast BEV diffusion is required by CO₂ emission regulations (battery pack R&D and production) costs need to be covered by alternative founding)
- **Conservative scenario** is to be considered only if government will strongly support BEV sales by introducing high economic incentives

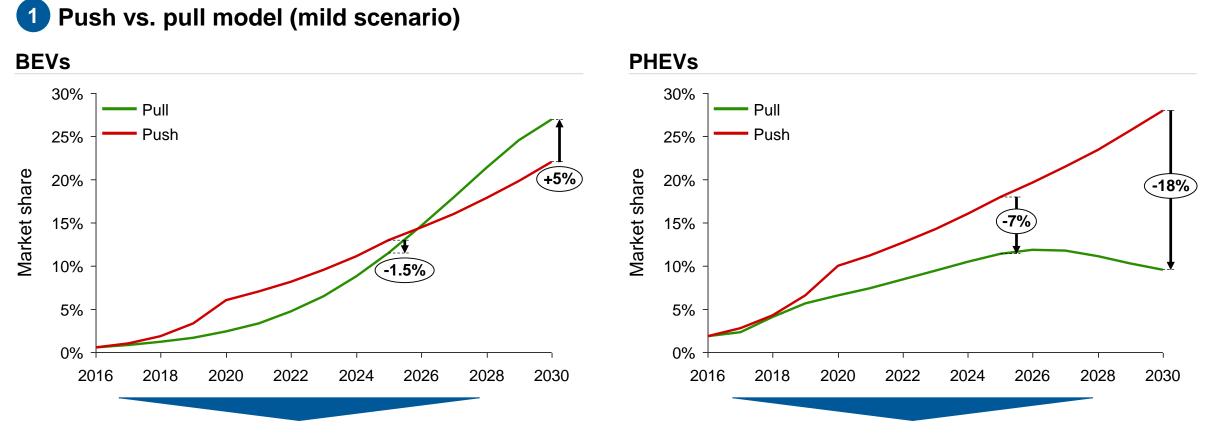
B BFV C BEV D BEV

Source: AVL, Strategy Engineers

Strategy Engineers 2017

 \bigcirc

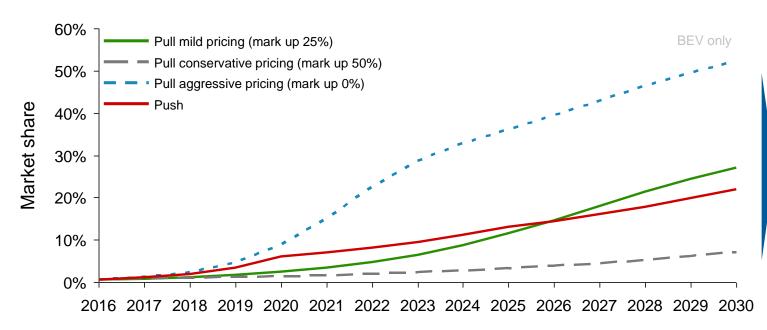
SE17_(SE_AVL_STA)_20170607_Handout.PPTX


A PHEV 📕 B PHEV 📕 C PHEV 📃 D PHEV 📕 E/E PHEV

Electrification

BEV pull is aligned with push forecasts, whilst PHEV diffusion is expected to slow down by 2030

Pull demand of BEVs is aligned with market push to comply with CO₂ emission regulations


PHEV technology is too expensive for penetrating the market as much as needed by the CO₂ emission requirements

According to different pricing strategies, customer demand presents high variation

1 Push vs. pull model

Pull effect according to different pricing strategies (BEV)

Pricing assumptions							
Mark-up on components cost (excl. battery pack) for all scenarios 50%							
Mark-up on battery pack cost 0% (aggressive) 25% (mild) 50% (conservative							

Comments

- According to different pricing strategies, customer willingness to buy (pull) can be strongly influenced
- Pricing strategies must take regional and local subsidies into account, to keep the pull demand as close as possible to the required push
- In case the pricing strategy is too aggressive, the financial stability of the automotive industry can be threatened
- A too conservative pricing strategy can lead to a low diffusion of BEVs, leading to the payment of penalties

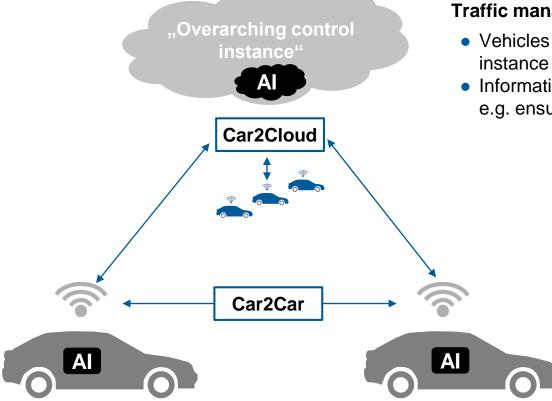
A winning pricing strategy must be defined

Pure electric vehicle sales are expected to take off once attractive products become available – aggressive pricing and discounts will lower margins

1 Summary Electrification

- Legislation in Europe (but also China and US) will demand fleet electrification from 2020 onwards
- Key for OEMs will be the most cost-effective powertrain mix in balance with customer demand
- Prerequisite for customer demand is an attractive product offer, most importantly a reasonable electric range and competitive cost compared to conventional ICEs, i.e. a price-competitive volume EV with an electric range above 400km
- Hybrid powertrains are a bridging technology to facilitate the transition from conventional powertrains to EVs; hybrids lack a superior value proposition over EVs to justify a long-term market success
- Hence, conventional powertrain improvements, the introduction of MHEV in small segments and the launch of multiple BEV vehicles are the most likely option
- Electric powertrains will become needed as a consequence, with radical changes for OEM engineering processes, value chains and manufacturing footprint
- OEMs need think about pricing strategies to fulfil needed EV quotas Aggressive pricing and discounts are likely required to achieve targets and avoid penalties

Riding the wave of change in the automotive industry


- Electrification
- Autonomous Driving
- Digitalization

Stand-alone "driving robots" cannot guarantee full safety and efficiency – they have to be integrated into a comprehensive traffic network system

2 Connectivity as condition for autonomous driving

Traffic management - Car2Cloud connection

- Vehicles are permanently communicating with overarching control instance and act as actuator and sensor at the same time
- Information is selectively distributed across traffic system in order to e.g. ensure homogeneous free-flow traffic

Time critical adaption of driving strategy \rightarrow Ad hoc (local) connectivity:

- Vehicles communicate directly in suddenly occurring (dangerous) situations
- Indirect cloud communication is skipped for time reasons

Technologies of autonomous and connected vehicles can be divided into three clusters with several layers in each cluster

3 Technology layers of autonomous and connected vehicles

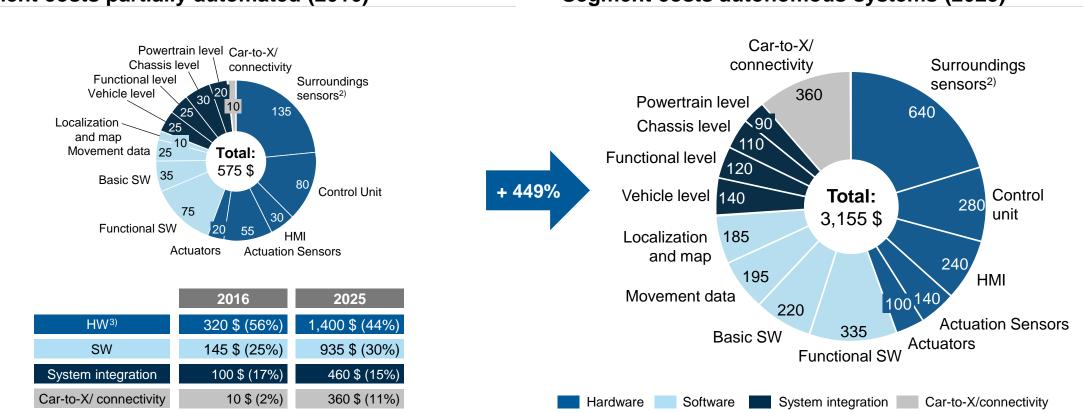
Off-board			Off-board backend Telco infrastructure Localization and map	 Providing capacity for storage (e.g. via cloud) and analysis of data Providing infrastructure for data transmission Providing static and dynamic content (e.g. Map) for current car situation
Connectivity	producing	consuming	Car-to-X/ connectivity	 Connecting car to internet (cloud) via mobile network Connecting car to car/ individuals/ infrastructure via WAVE¹⁾/ Wi-Fi
			Surroundings sensors	 Scanning surroundings by different sensors
			Functional SW	 Merging data from different sensors in environmental model to decide best possible vehicle path
g			Basic software	 Tracking and checking current status of vehicle
On-board			HMI and displays	 Seamless interaction with passengers
-uO	(Control unit	 Signal processing from data to actuators
			Movement sensors	 Speed, load and movement sensors
			Movement data	 Data recording and movement data storage
			Actuators	 Changing vehicle pathway and speed

Source: Strategy Engineers // 1) Wireless access in vehicular environments, WiFi-standard exclusively for cars and infrastructure

SE17_(SE_AVL_STA)_20170607_Handout.PPTX

Strategy Engineers 2017

 \odot



Autonomous Driving

In order to facilitate connectivity to on- and off-board systems, the total costs of car-related system is expected to rise by ca. 450% from 2016-25

2 Car-related automated vehicle value chain¹⁾ – cost development [\$/ % per car]

Segment costs partially automated (2016)

Segment costs autonomous systems (2025)

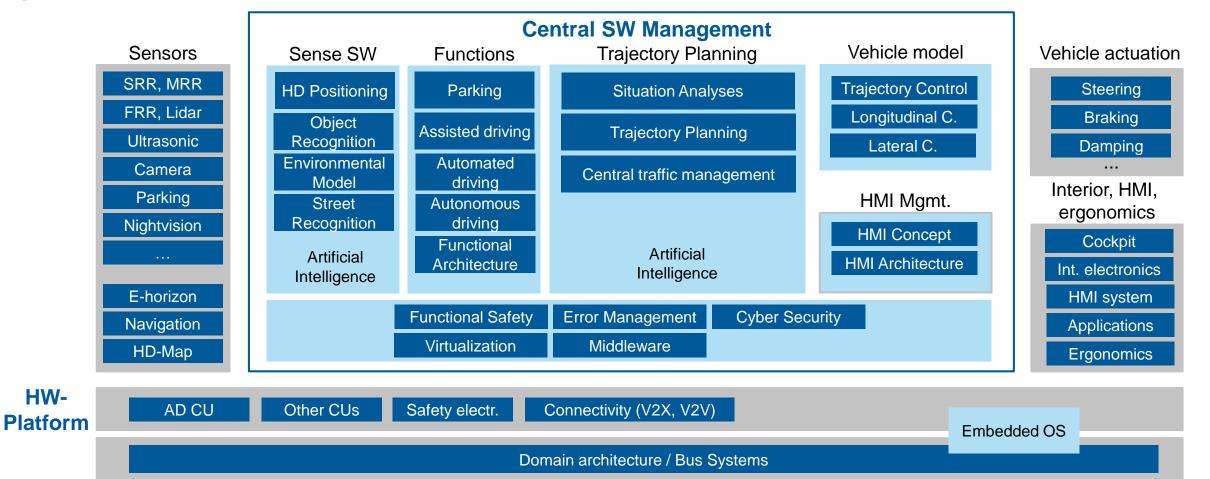
¹⁾ Does not include off-board content (telco infrastructure, off-board backend)

²⁾ Sensor costs may vary strongly dependent on combination of cameras and radar (shown) vs. lidar (ca. + 335 \$), ³⁾ Hardware

Source: Strategy Engine

2017

Strategy Engineers


 \odot

SE17_(SE_AVL_STA)_20170607_Handout.PPTX

Autonomous driving requires central SW management and HW platforms to interpret sensor data for path planning and automated control

2 Functional and system architecture

HW-

Autonomous Driving

© Strategy Engineers 2017

The resulting horizontal value chain will comprise several layers, whereas every layer will have own standards and own market leaders

AVL 💑

.....

STRATEGY ENGINEERS

	Suggestion	Standard know-how	Specific know-how	Core know-how	
orizontal layers	for OEMs	Buy	Cooperation / investment	Internal development	
IW platform	CPU and complete ECU				
/irtualisation	Special embedded kernels below operating system level for access/ functional safety requirements				
Operating system	Embedded operating system, increased standardisation in the future (e.g. AUTOSAR)				
liddleware	Standardisation (e.g. AUTOSAR) or quasi-standard solution		rface to		
Sensor data fusion	Interface to middleware/ applications as well as data fusion mapping	mide	dlowaro/ Dala	fusion pping	
Sensors	Sensors incl. GPS, maps and drivers				
afety	Functional safety				

Source: Strategy Engineers SE17_(SE_AVL_STA)_20170607_Handout.PPTX

OEMs will need to acquire core know-how in artificial intelligence, customer-related functions, user interface and device design

2 Horizonta	I value chain (2/2) – Customer funct	ions and enablers		INDICATIVE
	Suggestion	Standard know-how	Specific know-how	Core know-how
Horizontal layers	for OEMs	Buy	Cooperation / investment	Internal development
Machine learning	Artificial intelligence: On-board, off-board / in cloud			
Applications	Perceptible benefit for the user, own applications lead to USP			
Connectivity	Car2Cloud, ad-hoc Car2Car as well as other Car2X			
Centralised traffic control	Cloud-based route planning			
Cyber Security	Data security			

Seven key challenges are essential for OEMs to master Level 3 to 5 autonomous driving

2 Seven key challenges for the development of autonomous vehicles

			Enabler Differentia	iator
ni-	1. Working structure	 Project team organization, cross-functional decision rights Agile SW development aligned with HW development 		
Organi- sation	2. Vertical integration/ cooperation			
	3. System architecture	 Overall architecture (re-)definition and implementation Centralized domain and CU-architecture Modular systems ("scalability") Upgradeability and OTA updateability 		
lusters	4. Integration and validation	 Continuous integration as part of agile development Continuous and virtual HiL/ SiL validation Statistic/ scenario-based testing of total system 		
Competency clusters	5. Functional safety and IT security	 Multi-processor HW High priority on IT security and protection, SW and HW protection ("security by design") Domain and gateway security 		
Com	6. Autonomous driving functions	 AI, machine/ deep learning 3D object recognition, data fusion Trajectory planning ("driving strategy") Big data processing, Backend-based services 	Crucial for competition with digit	jitals
	7. HMI / User Experience	 Utilization of whole car as UI Seamless integration of consumer electronics 		

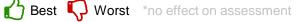
Source: Strategy Engineers

Strategy Engineers 2017

 \odot

Autonomous driving functions need to become much better to gain driver's acceptance

2 ACC Comparison – Auto, Motor und Sport


Assessment

	I				Ċ
	Volvo V60	BMW X1	VW Passat	Mercedes C-Klasse	Audi A4
Scope of functions	****	****	****	****	****
Precision ACC	****	****	****	****	****
Precision lane keeping	****	****	****	****	****
Handling	****	****	****	****	****
Price* [€]	2,150	1,400	1,590	2,499	1,640
Total score	****	****	****	****	****

Summary

Ambiguous result

- In many situations supporting effect on the driver can be achieved
- Nevertheless, he or she always needs to be attentive
- None of the models tested could shine in all driving situations; especially lane keeping needs improvements
- Naturally, ACC functions are more sophisticated, as the have been on the market for >15 years by now
- Therefore, manufacturers' plans to release fully automated vehicles in a few year seem highly ambitious

Source: Auto, Motor und Sport

SE17_(SE_AVL_STA)_20170607_Handout.PPTX

OEMs can beat Digitals on their home turf by taking advantage of being the designer of the "vehicle ecosystem" and the integrator of all of its elements

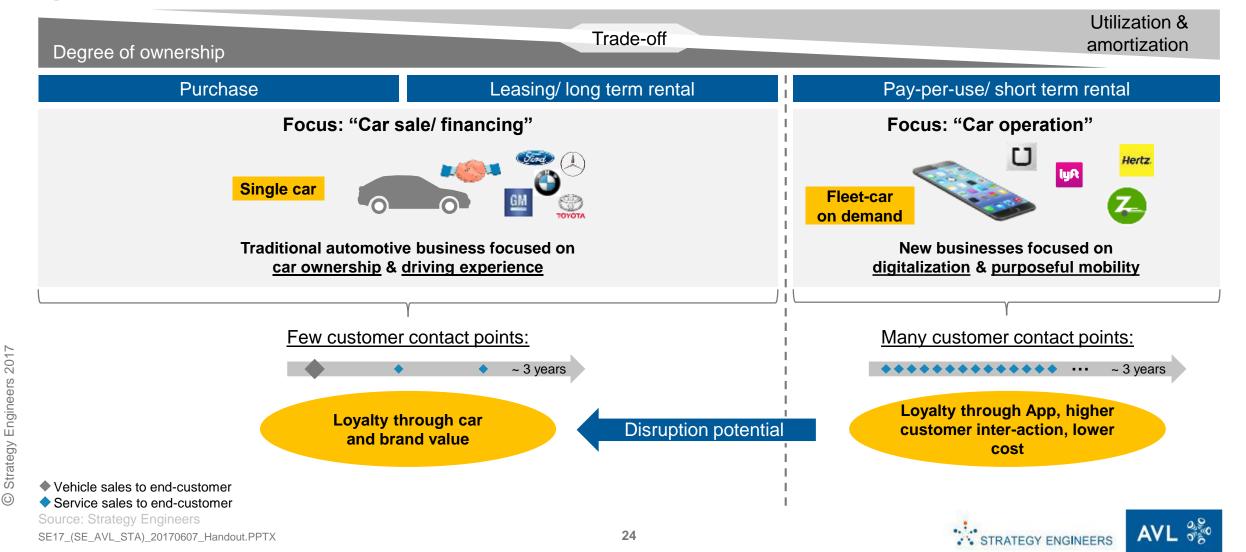
2 Summary Autonomous Driving

- Superior autonomous vehicles will be differentiated by their functionality and user experience. The best vehicles will make their passenger feel comfortable, safe and secure
- The future value chains will become horizontalized and will require OEMs to make deliberate choices about where they need to build own strengths and where they rely on partners
- If OEMs want to better digital players they need to refocus and build strong competencies in the following areas:
 - User Interface and Experience
 - Applications / Functionalities for autonomous Driving
- OEMs need to be build own core competencies in these areas plus the following:
 - Machine Learning / Artificial Intelligence
 - Sensor Data Fusion
 - Functional safety and cyber security
- All other required capabilities need to be acquired through strategic alliances and stable supplier relationships.
- This requires **new organizational models** which ensure stringent execution and decision making. **New development processes** are needed as well as **new project management** roles and responsibilities

2017

Riding the wave of change in the automotive industry

- Electrification
- Autonomous Driving
- Digitalization



2017

 \odot

Digital businesses, which conveniently facilitate the use and billing of shared cars, bear the potential to disrupt the traditional automotive industry

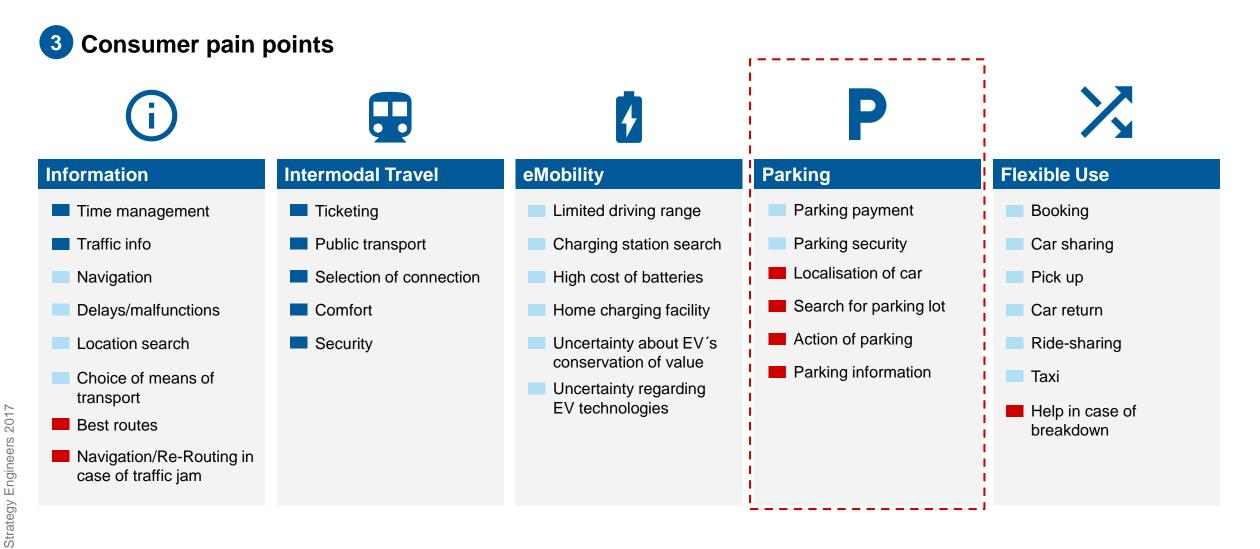
Mobility business models and drivers for customer loyalty 3

Strategy Engineers 2017

 \odot

Automotive digital offers based on C2X-applications can be classified into three main clusters: "Car-integrated", "car-related" and "beyond car"

Offers	Description
Car-integrated products and services	 Definition: Enrichment of the driving experience by integrating digital content into the car Examples: Navigation, infotainment, augmented reality, mobile apps (incl. remote car control)
Car-related services	 Definition: (More convenient) fulfilment of customer demands related to daily car-usage Examples: Parking services, public charging of EVs, location-based services and update/ "tuning" services (incl. remote SW-updates)
Beyond car services	 Definition: Fulfilment of general mobility, social, cultural and lifestyle demands beyond customers' own cars Examples: Car and ride sharing, intermodal travel services, event bookings/ "concierge services"


Scope goes beyond pure car-integrated products to services, which improve also

non-car mobility and make life more comfortable

Source: Strategy Engineers SE17_(SE_AVL_STA)_20170607_Handout.PPTX

Basis for changing mobility needs are consumer pain points with intensifying urban traffic and eMobility limitations, e.g. parking

Car-related Car-independent

Source: Strategy Engineers SE17_(SE_AVL_STA)_20170607_Handout.PPTX

In-car

 (\bigcirc)

Strategy Engineers 2017

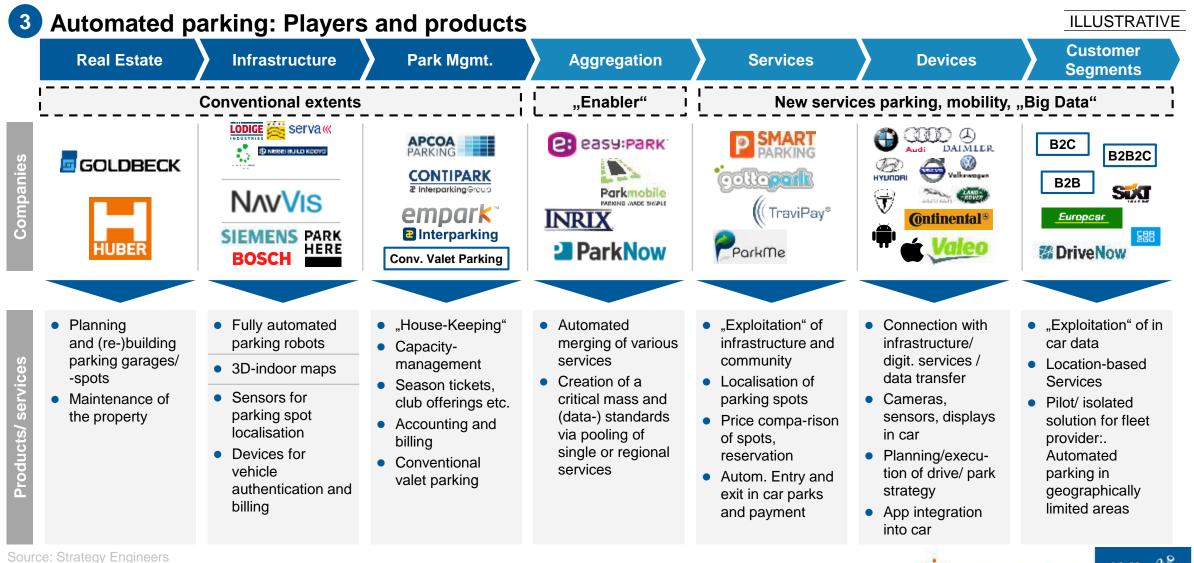
 \odot

The development of parking services will comprise of "aggregation" of services with crossdevice support and a variety of customer segments

ſ	raditional Parking servi "Enable Parking"	ces	New Mobility Services "Solve the Parking Problem"				
Real Estate	Infrastructure	Park Mgmt.	Aggregation		Services	Devices	Customer Segments
 Parking lot 	 Access Payment Availability Detection Reservation 	 Provisioning of parking lots (based on infrastructure) incl. apps 	 Sign up PSOs¹, interfaces, infrastructure for services 		Prediction, Pay,	 Smartphone App PND³ Car-integrated 	 OEMs B2B (e.g. car renta fleets) B2B2C (e.g. cities) B2C
	Enabler Layer][Scope "New Mobility Services"				
 Local / regional sc Relatively slow de Largest share of v Brand awareness Highly fragmented 	 Wide coverage important Slow deployment Potential for cross- competitor partnering and/ or dedicated aggregator companies (e.g. "Hubject" in charging) 	•	 Long sales / implement however, can be strat between infrastructure Limited margin potent Brand awareness implimportant with B2B / E 	ive environment with st as far as services are c ntation cycles with OEN egic anchor points (whi e and vehicles) tial on services revenue portant in case of direct 32B2C sales) isolidation expected in t	concerned Ms / B2B customers– o owns the interface		

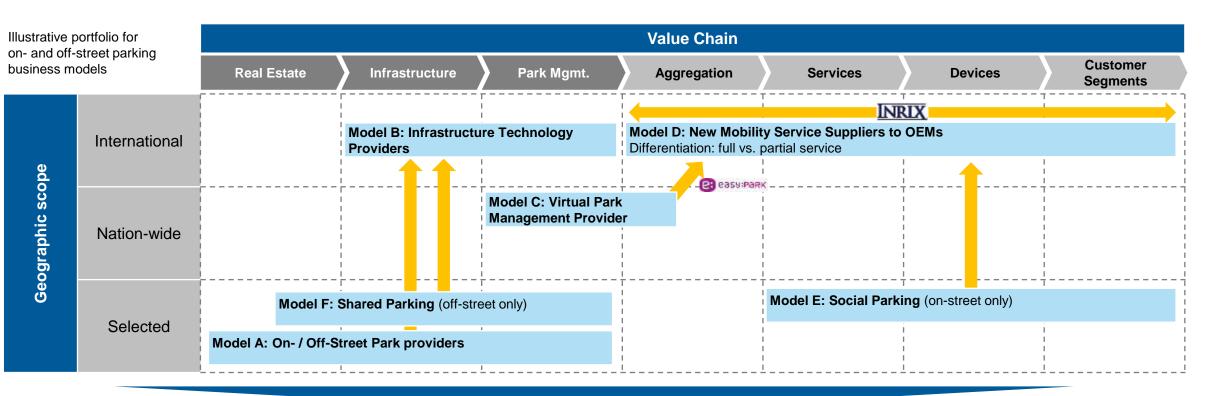
SE17_(SE_AVL_STA)_20170607_Handout.PPTX

27



Strategy Engineers 2017

 \odot


"Future parking" is an innovative topic area with different players who can boost unexploited potentials by collaborating

Various business models have established / arisen along the value chain with strong dynamics to expand / alter focus of value creation

3 Scope of different business models for on-/off-street parking services

- Business model analysis: How do the key players in the industry position themselves?
- Potential: identification of blue ocean scenarios, anticipation of future developments

Source: Strategy Engineers Research // \implies expected future development SE17_(SE_AVL_STA)_20170607_Handout.PPTX

ILLUSTRATIVE

29

The definition and piloting of strategic initiatives at level 3 is the heart of the agile digital strategy processes, enabling quick and decisive actions

3 Level 3 – Strategic Initiatives: Process

Agile strategy development process ("TurboCharger") Strategic Objectives Implementation 1 Continuous Ideation Co_{ntinuo}us Ideation 3 4 2 Dilloting / Prototyp Go/No-Go Marketing and investment planning Consumer profiling and segmentation

- Competitive response and timing
- Advertising and promotion decision-making
- Product tracking

1 Project Selection

- Strategy and new product linkages
- Governance of new initiatives
- Tracking and definition
- Project approval decision-making processes
- Use of advanced valuation methodologies

Piloting, Prototyping

- Disciplined and effective stage/ gate process
- Time to market
- Bottleneck elimination and identification of project "congestion"
- Parallel planning of work steps
- Resource allocation

Continuos Ideation

- New product and technology ideas
- New business concepts and opportunities
- Consumer insights
- Trend analysis and anticipation
- New to the world and extensions of existing ideas

The strategy TurboCharger ...

- ... is an agile process
- ... is a continuous process
- ... uses parallel processes
- ... utilizes frequent and short review cycles
- ... is driven by short decision intervals
- ... builds a back-log of initiatives
- ... re-assess and re-prioritizes activities/back-log frequently and rapidly

Source: Strategy Engineers

Riding the wave of change in the automotive industry requires to reinvent the way cars are made, new types of cars and new businesses

Starting point: Take stock, prepare and enable

- Describe company vision and direction for new value creation
- Discover existing value creation areas
- Develop ideas about new value opportunities
- Set new value business case framework
- Develop and approve action plan

2)

New carmaking

Optimize within current boundaries

- Scan entire supply chain for new value opportunities
- Investigate sustainability along entire value chain
- Maximize scale in components and systems
- Adjust footprint to global business requirements (Locations, Organization, Processes, etc.)
- Increase process efficiency (throughput) in planning, engineering, and purchasing

New cars

3

Plan, engineer, launch new vehicle types

- Accelerate simultaneous development cycles
- Decouple vehicle and electronics
 development cycles
- Improve trade-off decisions between weight – cost – performance to reduce weight
- Improve planning decisions balancing regional requirements and global standards
- Investigate mission and country specific derivatives

New business

Enter and excel in new business areas

- Drive extended value creation through new usage models for cars (Energy storage, rental, etc.)
- Use connected car models for partnering with service providers
- Increase service sales
- Install corporate ventures
- Enhance partnering with suppliers and dealers

2017

Questions?

© Strategy Engineers 2017

Source: Strategy Engineers, brand eins SE17_(SE_AVL_STA)_20170607_Handout.PPTX

www.strategyengineers.com

Four years in a row!

Once again after 2014, 2015 and 2016 Strategy Engineers has been awarded as "best consultants" in 2017 by German leading business magazine brand eins and Statista. In addition to an improvement within the three categories "automotive & supplier", "machinery & plant engineering" and "operations management", Strategy Engineers was ranked for the first time as best consultant in the category "strategy development".

This statistical evaluation was conducted by Brand eins and Statista on the performance of 15,000 consultancies in total. With more than 3,200 questioned clients, executives, project leaders and partners this survey represents the biggest one within the German consultancy market.

